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Molecular-dynamics-like simulations are utilized to map regions of flow parameter space where steady flows occur for
monodisperse assemblies of inelastic, frictional spheres, flowing down frictional, inclined planar surfaces. The trajectory-fol-
lowing technique utilizes nearly-rigid particles interacting via contact forces and gravity. Energy losses in the simulations
occur only via displacement-dependent hysteretic loading /unloading paths and sliding friction. Initial scoping calculations
are examining flows on an incline tilted 17° from the horizontal, determining the boundaries of various flow regimes.
Assemblies of inelastic spheres with interparticle friction coefficients less than the tangent of the inclination angle accelerate
unboundedly. Those with friction coefficients somewhat greater than the tangent of the inclination angle develop steady
velocity and density profiles for a variety of flow depths but result in arrested flow for coefficients of friction greatly
exceeding the inclination angle tangent (e.g., by more than a factor of 2). Conversely, a significant range of inclination angles
that will result in steady flows for a given set of assembly properties, is expected to exist.

1. Simulation technique

The calculations reported here are carried out
for a fixed number of spherical particles on an
inclined, frictional, planar surface. The calcula-
tional space is bounded: on four sides with sta-
tionary periodic boundaries; on the bottom by the
frictional plane; and the top surface is free. The
simulations are initiated with the spheres placed
randomly in the region above the inclined sur-
face, distributed over a height so that the initial
solids packing is 0.4 or less. The particles are
assigned small random velocities, and they are
also given an initial mean group velocity down
the incline (usually at a speed slightly faster than
the expected steady-state speed). No initial gradi-
ents in velocity or density are assigned to the
assembly. For ease of modeling, the x-axis is
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aligned with the lower (inclined) plane and grav-
ity is then “tilted” to provide the driving force for
the flow. The dynamical equations are “turned
on” and the flow is allowed to develop. Because
periodic boundaries are used in the direction of
flow, only “steady-state” conditions are physically
meaningful. Thus, the system is allowed to
“evolve” until parameters such as the mean flow
velocity and the time averaged velocity and den-
sity profiles remain constant in time. Once a
steady condition is achieved, time averages are
accumulated. In these simulations there are no
side wall effects and the total number of particles
per unit area is fixed (an input quantity). During
the simulation we can calculate the mean flow
velocity, mass flux, density and velocity profiles
and other “internal” flow parameters.

These simulations differ somewhat from a typ-
ical chute flow experiment wherein particles are
usually supplied through an opening of fixed area,
producing a flow with a fixed mass flow rate. The
mass-per-unit-area for such flow can be measured
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in the laboratory quite readily by “capturing” the
flowing material between two rapidly closed gates
(Patton, 1985) (providing a simple method to
determine the mean flow velocity). Surface veloc-
ities are also often measured in laboratory tests,
usually using non-intrusive optical techniques
such as fiber optics probes or motion pictures.
Determination or attainment of “steady-state” is
usually restricted in laboratory tests by the physi-
cal length of the chute.

Comparisons between the models used here
and laboratory measurements of essentially 2-di-
mensional chute flows (between two vertical walls,
one particle diameter apart) have shown good
agreement on the velocity and density profiles
obtained in near steady-state flows (Drake, 1988;
1992). Comparisons with Couette flow experi-
ments have shown similar good agreement be-
tween measured and model calculated stresses in
steady shearing flows (Savage and Sayed, 1984;
Campbell, 1986; Walton 1990). These compar-
isons and others give us confidence that the be-
havior generated by these models is very much
like the behavior of real spheres in physical tests.
Comparisons with kinetic-theory based predic-
tions of granular flow behavior have also shown
reasonably good agreement when the simulations
have excluded frictional coupling so as to simu-
late particles with properties similar to those in
the kinetic theories (Lun et al., 1984; Jenkins and
Mancini, 1989; Richman, 1989; Walton et al.,
1991).

2. Numerical method

The numerical method utilizes a straight for-
ward extension to 3-dimensions of the 2-dimen-
sional contact force models and integration equa-
tions of Walton and Braun (1986), (WB model).
Explicit integration of Newton’s equations of mo-
tion is accomplished via the “leap-frog” method
for each of 6 degrees of freedom (see Allen and
Tildesley (1987)). Since the particles are spheri-
cal, only the magnitude and direction of the angu-
lar velocity is needed to determine the infinitesi-
mal surface displacements between timesteps (i.e.,
the information necessary to determine changes

in tangential friction forces). For the motion of
one sphere in the x-direction and rotation about
its x-axis the finite difference equations are:

n+1/2 _ 2n—1/2 F
X =X + ;'ng At,

velocity,

xn+1 =x" +xn+1/2 At,

position,

n
@" T2 =gn 2 4 T Ag,
0

angular velocity,
where the superscript, n, refers to the current
time step; F, is the x-component of the sum of
all contact forces acting on the sphere; g, is the
x-component of the applied body force (i.e., grav-
ity); m is mass; N is torque; I, is moment of
inertia, and At is the time step. Similar equations
are used for the other two directions. The orien-
tations of the individual spheres (e.g., Euler an-
gles) are not needed to determine the forces or
the subsequent motion; however, in anticipation
of utilizing non-spherical particles in future calcu-
lations, and for visualization of particles rolling,
the orientation of each sphere is determined in
the simulations utilizing a slightly modified form
of the quaternion method described by Evans
(1977). Details of that implementation will be
included in a subsequent paper.

2.1. Normal force

The normal force during contact, Fy, is identi-
cal to the WB model:

K a, for loading,

F. =
N Ky(a—ay),

for unloading,

where a is the “overlap” between the contacting
spheres; K, > K;; and « represents the relative
“overlap” where the unloading force is set to
zero (due to inelastic deformation of the sur-
faces). This normal-force model produces binary
collisions with a constant coefficient of restitution
given by e = K, /K, , independent of the relative
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velocity of impact. Experimental evidence for this
model, and finite element calculations that this
model mimics, are discussed in Walton (1992).

2.2. Tangential force

The tangential friction force is a two-dimen-
sional (surface) extension to Walton and Braun’s
one-dimensional approximation to Mindlin’s
(1949) elastic frictional sphere contact force
model. In that WB model the effective tangential
stiffness of a contact decreases with tangential
displacement until it is zero when full sliding
occurs, In the present two-dimensional surface
model the tangential displacement parallel to the
current friction force and the displacement per-
pendicular to the existing friction force are con-
sidered separately. They are later combined vec-
torially and their sum is checked against the total
friction force limit, u F,.

The effective tangential stiffness in the direc-
tion parallel to the existing friction force is given
by:

T-T* \”
K,|1—--~————+—1 , for T increasing,
0 ,U«FN—T*) g

Kr= T*-T \
K,{1— ———=] , for T decreasing,
0 wky+T* _ 8

(1

where K, is the initial tangential stiffness; T is
the current tangential force magnitude; T* starts
as zero and is subsequently set to the value of the
total tangential force, 7', whenever the magnitude
changes from increasing to decreasing, or vice
versa; vy is a fixed parameter often set to 1/3 to
make the model resemble Mindlin’s elastic fric-
tional sphere theory, and w is the coefficient of
friction. A value of 1 or 2 for v more closely
mimics the behavior of frictional contacts involv-
ing plastic deformation in the contact region
(Drake and Walton, 1992).

The implementation of this friction model in-
volves some -algebraic and vector manipulation
since the direction of the surface normal at con-

tact changes continuously during a typical con-
tact. The simulation model assumes that the dis-
placements from one time step to the next are
relatively small. For two spheres in contact we let
k;; be the current unit vector from the center of
sphere I toward the center of sphere J, (ie.,
kjj=(r;=r)/|lr;—r;|, where r; is the radius
vector gor the location of sphere I, etc.). The
vector k;; is also the unit normal at the contact
point between spheres [ and J.

The tangential force from the previous time
step, T4, is projected onto the current tangent
plane,

To=k;; X Tyq X k;

A

= Lola — kij(’;ij ’ Told)'

This projected friction force is normalized to the
old magnitude, so that |T| = |T,, |, to obtain a
new “starting” value for the friction force, T,
before adding in the effects of displacements
during the last time step,

T= |Told/TO | T,.

A unit vector in the direction of this “starting”
friction force, £=T/|T|, is used in several sub-
sequent steps.

The relative surface displacement during the
last time step is projected onto the contact tan-
gent plane,

As? 12 = [l:t,-j X (vj””l/2 —vi”‘l/z) XIQ,-J-

+r,.(a7;"1/2 X I?,.}.) + r}-(a_f]’-’_lﬂ X I?ij)] At

zAr..—l}ij(l:rij~Arij)

i

+ [r,.(a")’;"l/z x k)

Sn—1/2 v b
+ry( @771 x k)| At
where Ar;; =ri—r/"! is the change in the rela-
tive position vector during the last time step; v is
the velocity, and & the angular velocity, and r
the sphere radius, with subscripts i and j indicat-

ing sphere I or J, respectively, and At is the
timestep.
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Figs. 1.1-1.6. (a) Velocity; (b) density profiles; and (c) partial configurations of simulation calculations of assemblies of 1 mm
diameter spheres on a frictional plane inclined 17° from the horizontal. Solid lines are instantaneous profiles, dotted lines are
cumulative time average profiles. Each row is for a different flow depth (N / a?=1.24,25,5, 10, 20, 40 for Figs. 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, respectively). Note the non-shearing and crystalline regions in the deeper flows. (See text for discussion.)
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Figs. 1.1-1.6 (Continued).

243



244 O.R. Walton / Frictional spheres

The displacement parallel to the “old” friction
force is

As,= (As""V2-P)i,
and the displacement perpendicular is
As, =As""12—As).

The effect of the displacement parallel to the
existing friction force is treated almost identically
with the 1-dimensional WB model with the ex-
ception that the value of T is always positive
(since it is the magnitude of a vector in this 2-D
model).

If the value of the normal force, F,, changes
from one time step to the next, then the value of
T* in Eq. (1) is scaled in proportion to the
change in normal force,

T* =T* Fi/Fr~.

The effective incremental tangential stiffness,
K, is determined from Eq. (1) with T*’ substi-
tuted for T*. A new value for the component of
the friction force parallel to the old friction force,
T, is calculated,

I,=T+K7 Asy.

If both of the conditions As”~1/2-f<0 and T +
(As"~12.§)K, <0, are simultaneously true then,
in effect, the direction of T, has reversed, and in
the model the sign of the effective “remembered”
turning point, 7'*, is changed (i.e., T* is replaced
by — T *) for the next time step so as to produce
a smoothly varying slope using Eq. (1).

Displacement perpendicular to the existing
friction force is assumed to have no pre-existing
surface strain and is, thus, treated as “new” dis-
placement from the origin with an effective stiff-
ness equal to the value of K, in Eq. (1), so that
the perpendicular part of the tangential force
becomes,

T, =K,As,.

The new tangential force is tentatively set equal
to the vector sum of 7 and T,

T'=T,+T, .

This value is checked to ensure that it does not
exceed the friction limit, u Fy, and if it does, it is
scaled back so its magnitude equals that limit.

This tangential force model calculational pro-
cedure appears somewhat complex; however, it is
quite straight forward to implement in standard
Fortran. When the exponent, v, is set to zero, the
model becomes linear. The force—displacement
curves generated in this linear case for a series of
complex 2-dimensional paths have been checked
against the linear 2-dimensional contact model in
Cundall and Strack’s TRuBaLL code (1979a,b),
producing essentially identical results with the
two models (Trent and Walton, 1987).

3. Results

A variety of flow depths (e.g., number of parti-
cles per unit area) and material properties have
been examined in simulation calculations of flow
down a plane inclined at 17° from the horizontal.
We found that for all cases when the coefficient
of friction, u, is less than the tangent of the angle
of inclination, then the entire assembly of spheres
simply accelerates unboundedly (as might be ex-
pected). Similarly, very sparse flows, (i.e., those
with only 0.5 particles per diameter squared area),
also accelerated unboundedly as the individual
spheres rolled down the incline with little or no
interaction between them. Flows with between
one and two particles per unit area arrive at
steady-state velocities that are slower than other
flow depths. The mean velocities of the simulated
flows tended to increase as the number of parti-
cles per unit area increases. Shallow flows (i.e.,
those with fewer than 5 particles per unit diame-
ter squared surface area) usually exhibit mono-
tonically increasing velocity profiles. Deeper flows
often exhibit a non-shearing region riding over
the top of a relatively thin shearing layer. The
shallowest flows (fewer than 2.5 per unit area)
exhibit monotonically decreasing density profiles
with height above the incline. Intermediate depth
flows exhibit a maximum solids fraction some-
where inside the flow region, while the deepest
flows exhibit an essentially uniform (random close
packed or crystal) non-shearing region above a
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lower density shearing region. Figures 1.1 through
1.6 summarize the results of a series of calcula-
tions for spheres with a coefficient of restitution
of 0.85 and an interparticulate friction coefficient
of 0.4 and an identical value for the coefficient of
friction with the lower plane. View a is the veloc-
ity profile, b is the density (packing fraction)
profile, and c is a snapshot of a portion of the cell
for Figs. 1.1 through 1.4 and shows the entire
calculational cell for Figs. 1.5 and 1.6. The spher-
ical particles in these simulation calculations had
a diameter of 1 mm, a mass of 1.492 X 1079 kg.
Gravitational acceleration was assumed to be 9.8
m/s?. Values in the figures are stated in MKS
units; however, it is quite often convenient to
utilize non-dimensional quantities. The most nat-
ural non-dimensional units for such flows seem to
be: time, ¢t * = ty/g /0 ; length, I* = [ /o ; and mass,
m* =m/m, where m, is the mass of a single
particle. Such a selection of non-dimensional units
would make non-dimensional velocity, v* =
v/ \/g,; =~ 10.1v, and ‘spring’ stiffness, K* =
Ko/mg = 68.4K.

The unusual crystalline non-shearing regions
for flow depths of 10, 20 and 40 are probably
more pronounced than would be typical in a
physical test for a number of reasons. First, all of
the spheres in the simulations are exactly the
same size. Second, the inclined plane has no
roughness; it is perfectly smooth, though fric-
tional. Finally, the calculational space is quite
small, being only 5 or 10 particles across. All of
these factors increase the likelihood of crystals
forming; however, recent personal observations in
the laboratory by the author and various articles
in the literature such as MacRae and Gray (1961)
and Owe Berg et al. (1969) suggest that the
appearance of crystalline regions in assemblies of
identical spheres may not be that unusual, espe-
cially if “appropriate” deformation occurs in an
initially random assembly.

The propensity to form crystalline regions is
much more pronounced in two-dimensions than
in three and such crystallizations have often been
seen in past simulation calculations (see for ex-
ample Walton and Braun (1986)). More recent
two-dimensional simulations by Zhang and
Campbell (1992) have explored transitions be-
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Fig. 2. Mean velocity versus flow depth for simulations of
gravity flow of 1 mm diameter spheres on a 17°, frictional,
inclined plane.

tween fluid-like shearing regions and glass-like or
crystalline solid-like regions in simulations of
Couette flow.

Figure 2 shows how the mean flow velocity
varies with the number of particles per unit area
and with material properties such as the coeffi-
cient of restitution and the coefficient of friction.
Interestingly, the more elastic particles flow
slower and have a deeper shearing layer at the
bottom than do less elastic particles.

Analysis and interpretation of these flows is
still in progress. The ability of a flowing layer to
dissipate energy appears to be intimately related
to the characteristic depth of shearing that devel-
ops. The slowest flows exhibit shearing through-
out their height. As the flows get deeper, the
thickness of the shearing layer tends to decrease.
Thus, a smaller fraction of the total bed tends to
be experiencing energy-dissipating inelastic colli-
sions and frictional sliding. Consequently, deep
assemblies flow faster than corresponding shallow
assemblies. The fast flowing deep layers may have
significant implications for long run-out land-
slides and avalanches.

The total energy loss is a result of a combina-
tion of both frictional sliding and collisional losses.
However, a simplistic qualitative interpretation of
the calculated flow behavior can be made empha-
sizing the energy losses due to collisions. More-
elastic particles produce slower steady-state ve-
locities than do less-elastic particles. These
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more-elastic particles can propagate kinetic en-
ergy from the bottommost rolling layer deeper
into the assembly above; thus, producing deeper
shearing layers. The deeper shearing layer in-
volves a greater fraction of the particles in inelas-
tic collisions (and sliding contacts), and appar-
ently, such an assembly can dissipate energy at a
faster rate than a comparable depth assembly of
less-elastic particles.

An unanticipated finding is the pronounced
sensitivity of the velocity and character of the
deeper flows to the effective stiffness of the
nearly-rigid contact normal force model. Assem-
blies with relatively soft particles (that would
result in static “overlaps” on the order of one
half of one percent of a particle diameter due to
the large overburden load of the deepest flows,
e.g., 40 per unit area) produce dynamic loads in
the rapid shearing lower layer with up to 5% of a
diameter overlap. This large overlap allows the
particles immediately above the bottommost
rolling layer to glide over them with less vertical
motion than stiffer particles experience. This re-
sults in less kinetic energy going into the layers
above the bottommost rolling layer and a corre-
spondingly thinner shearing layer and higher
mean flow velocities. Increasing the stiffness by 1
or 2 orders of magnitude significantly increased
the depth of the shearing layer and produced
lower mean flow velocities for the flows deeper
than 10 per unit area. The shallow flows (less
than 5 per o? area) were relatively insensitive to
the stiffness of the spheres, since even the softest
particles simulated only experienced dynamic
overlaps of one half of one percent of a particle
diameter. Further simulations and interpretation
of the flows are in progress.

The flows reported here appear to differ quali-
tatively from the experimental flows of Johnson
et al. (1990). It is not clear at this time if the
perfectly flat nature of the simulated incline con-
tributes to the differences. Future simulations
will introduce various degrees of roughness for
comparison with experimentally measured flows.
Also, various theoretical efforts are currently un-
derway investigating the interactions and flow
behavior of inelastic and frictional particles flow-
ing on inclined surfaces and between frictional

and bumpy boundaries (Louge et al., 1991; Jenk-
ins, 1992; Richman and Martin, 1991). It is antici-
pated that in the near future we will be able to
directly compare simulations to kinetic-theory
predictions for similar particles and boundary
conditions.
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